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Abstract
We demonstrate theoretically that a one-dimensional anisotropic photonic crystal can exhibit an
absolute photonic band gap in which the propagation of light is prohibited for all polarizations
and for a given incidence plane. Our structure is formed by the combination of a simple finite
superlattice, composed of two alternating birefringent biaxial layers, with a cladding layer. The
latter is made of the same material as one of the layers constituting the perfect superlattice, but
with different orientation and thickness. We discuss whether the birefringence of the layers has
a significant impact on the reflection gap. We have found that for reasonable values of structure
parameters an absolute band gap can be obtained. Green’s function method is used to derive the
necessary expressions for our calculation. The effect of different parameters, namely, the
orientation of the layers, the filling fraction, etc, is investigated to achieve a birefringent
reflector.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past decade, much experimental and theoretical work
has been devoted to the concept of photonic crystals, because
of various optoelectronic applications [1–6]. These crystals
possess a frequency band that imposes rigorous conditions
on the propagation of electromagnetic waves in and out of
the structure. Recently, great effort has been made in the
design and manufacture of artificial microstructures possessing
an absolute and complete three-dimensional (3D) photonic
band gap [7, 8]. A complete photonic band gap requires that
there is no allowed photon propagation state in a specified
frequency for all directions of propagation and polarizations.
So, for frequencies within the complete band gap, the
structure exhibits total reflectivity for all incident angles.
This phenomenon is known as omnidirectional reflection.
Nevertheless, several technological difficulties restrict the
fabrication of such small three-dimensional structures (of the
order of 100 nm), especially for photonic crystals in the
visible region. However, the complication associated with
three-dimensional photonic crystals led to the investigation of
one-dimensional periodic structures [9–15], which are easier

to fabricate than 2D and 3D ones, but still offer unique
possibilities for light control.

A one-dimensional (1D) photonic crystal, called an
omnidirectional reflector, has many advantages over its
metallic counterpart. A metallic reflector can reflect light
over a wide range of frequencies for arbitrary incident angles.
At infrared, optical or higher frequencies there are, however,
considerable dissipative losses owing to absorption. Unlike
metallic reflectors, multilayer dielectric reflectors can have
an extremely low loss and a high reflectivity at certain
frequency ranges. Recently, it has been shown that a multilayer
dielectric reflector can have a high reflectivity over a broad
range of frequencies at all incident angles if the refractive
index and the thickness of the constituent dielectric layer
are correctly chosen. This kind of omnidirectional dielectric
reflector has been attracting a great deal of attention and
potential applications have been proposed [3–6, 16]. Using
an omnidirectional mirror of a periodic anisotropic stack,
Abdulhalim [16] proposed a reflective polarization conversion
Fabry–Perot resonator. This device is based on the polarization
conversion phenomenon obtained near the edge of the band
gap. The omnidirectional dielectric reflector can also be of use
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in integrated optics, optical fiber telecommunications, vertical
cavity surface emitting lasers (VCSEL), laser cavities, etc.

The main feature of all 1D photonic crystals is that the
property of omnidirectional reflection can occur with a simple
finite superlattice (SL), when the velocities of light in the
substrates are higher than the characteristic velocities of the
superlattice constituents. The limitation related to the choice
of the substrate can be removed in different ways [11, 17–19].
First, by combining the superlattice with a cladding layer
consisting of a material with a low optical index (or high
velocity) that acts like a barrier for the propagation of light
generated in the substrate. Second, by stacking together
two different periodic multilayers so that the omnidirectional
photonic band gap of the resulting structure is the union of band
gaps of the two multilayers.

Most previous researches, have involved the use of a
number of periodic and quasi-periodic structures based on
alternating homogeneous isotropic layers of high and low
refractive index to achieve an omnidirectional reflector. To
the best of our knowledge, there have been a few recent
works involving the use of an anisotropic stack to study the
reflection property [20, 21]. Abdulhalim [20] was the first
to report on omnidirectional reflection in birefringent periodic
multilayers consisiting of S̆olc filter type structures. This
study is further analyzed by Cojocaru [21]. These authors
demonstrated that a S̆olc folded type anisotropic dielectric
structure exhibits omnidirectional reflection at any polarization
over a wide spectral range. This structure is built from
alternating birefringent uniaxial layers of equal thickness
that have the same principal refractive indices and different
orientations of principal axes with respect to the laboratory
axes. It is shown also in [22] that a periodic stack of alternating
layers of a magneto-optic film and dielectric layer can act as an
omnidirectional reflector.

In this paper we focus our attention on the study of the
birefringent reflector formed by birefringent biaxial layers.
We demonstrate theoretically that a 1D anisotropic photonic
crystal can display an absolute photonic band gap for a
given incidence plane. Our reflector is a cladded-superlattice
structure, in which the cladding layer is formed by the same
material as one of the layers constituting the superlattice but
with different orientation and thickness. We discuss whether
the birefringence of the layers enhances the performance of the
device compared with its isotropic counterpart. Appropriate
choices of the material and geometrical properties are
discussed to realize a birefringent reflector.

Our paper is organized as follows, in section 2 we present
the theoretical expression of the dispersion relation and the
reflection and transmission coefficients in the framework of
Green’s function method. Section 3 shows the numerical
results of our reflector. The effect of different parameters,
namely, orientation of the layers, filling fraction, etc is
investigated. The conclusions are presented in section 4.

2. Model and formalism

We depict in figure 1 the geometrical structure of a birefringent
reflector. It is formed by a finite SL embedded between

Figure 1. Finite anisotropic structure formed by two birefringent
biaxial layers: NaNO2 (material i = 1) and SbSI (material i = 2),
with a cladding layer NaNO2 (material i = 0). The structure is
embedded between two semi-infinite isotopic media. The
orientations of the layers are characterized by the polar angle θi and
the azimuthal angle φi . di is the thickness of layer i , D is the period
of the finite system.

two semi-infinite isotropic substrates with a cap layer inserted
between the SL and substrate. The unit cell of the structure
is composed of two birefringent biaxial materials: NaNO2

(material i = 1) and SbSI (material i = 2). The cap layer
labeled as 0 is made by NaNO2 with different orientations of
the principal axes (x, y, z) of the crystal with respect to those
in the superlattice layers. The orientation of the birefringent
biaxial layer i with respect to the fixed (XY Z) coordinate
system is characterized by the Euler angles [24, 25] θi , φi and
ψi . The materials constituting the layers (i = 0, 1, 2) of the
structure are assumed homogeneous and nonmagnetic, and are
characterized by their thickness di and their principal refractive
indices [26] n(0,1)x = 1.344, n(0,1)y = 1.411, n(0,1)z = 1.651 and
n(2)x = 2.7, n(2)y = 3.2, n(2)z = 3.8. All the interfaces are taken
to be parallel to the (XY ) plane of a Cartesian (laboratory)
coordinate system and the Z axis is along the normal to the
interfaces. The period of the superlattice is D = d1 + d2.

Without any loss of generality, we assume an electromag-
netic wave propagating in the (Y Z) plane with the wavevector
�K = (0, qY , qZ ) and frequency ω. The different polarization

directions qZ of the electromagnetic wave are determined from
the wave field equation in terms of the macroscopic electric
field vector:

�K ∧ ( �K ∧ �E)+ q2
0

↔
ε �E = 0 (1)

where q0 = ω
c , c is the velocity of light in a vacuum and

↔
ε is

the dielectric tensor, the expression for which is given in the
appendix in the (XY Z) laboratory system. This equation can
be rewritten as follows:( q2

0εX X − q2
Y − q2

Z q2
0εXY 0

q2
0εXY q2

0εY Y − q2
Z qZ qY

0 qZ qY q2
0εZ Z − q2

Y

)

×
( EX

EY

EZ

)
=
( 0

0
0

)
(2)

where EX , EY , and EZ are the components of the electric
field in the laboratory axes. To have a nontrivial plane-wave
solution, the determinant of the matrix in equation (2) must
vanish. This yields four directions, two of them represent the
forward propagating wave and the other two correspond to the
backward propagating waves. Their expressions are

− q2
Z = α2

± (3)
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where,

α2
± = 1

2εZ Z
{[q2

Y (εZ Z + εY Y )− q2
0εZ Z (εX X + εY Y )]

± [[k2
ZεY Y − εZ Z (q

2
Y − q2

0εX X )]2 − 4q2
0 k2

ZεZ Z ε
2
XY ] 1

2 } (4)

with k2
Z = q2

Y − q2
0εZ Z .

Using the appropriate Green’s function, equation (2) is
written as⎛
⎝ q2

0εX X − q2
Y + ∂2

∂Z2 q2
0εXY 0

q2
0εXY q2

0εY Y + ∂2

∂Z2 −iqY
∂
∂Z

0 −iqY
∂
∂Z q2

0εZ Z − q2
Y

⎞
⎠

×
(G X X G XY G X Z

GY X GY Y GY Z

G Z X G ZY G Z Z

)
= δ(Z − Z ′)

↔
I (5)

where
↔
I is a 3 × 3 unit matrix and Gi j are the elements

of the bulk Green’s function G(Z , Z ′) determined by solving
equation (5), whose elements are given in the appendix.

We would briefly recall the principle for building the
Green function of the composite system. This will enable
us to present the necessary formulae used in our calculation,
namely, the dispersion relation and coefficients of reflection
and transmission. Our calculation is based on the theory of
interface response of continuous media. The object of this
theory is to calculate the Green’s function of a composite
system containing a large number of interfaces that separate
different homogeneous media. The knowledge of this Green’s
function enables us to obtain different physical properties of
the system. In this theory, the Green’s function of a composite
system can be written as [27–29]

g(DD) = G(DD)+ G(DM){[G(M M)]−1

× g(M M)[G(M M)]−1 − [G(M M)]−1}G(M D) (6)

where D and M are respectively the whole space and the
space of the interfaces in the lamellar system. G is a block-
diagonal matrix in which each block Gi corresponds to the
bulk Green’s function of the subsystem i (equation (5)). In our
case, the composite material is composed of a SL built out of
alternating slabs of materials i (i = 1, 2) with thickness di . In
equation (6), all the matrix elements g(DD) of the composite
material can be obtained from the knowledge of the matrix
elements g(M M) of g in the interface space M . The g(M M)
is calculated by inverting the matrix g−1(M M) formed by a
linear superposition of the surface matrix g−1

si
(M M) of any

independent film bounded by perfectly free interfaces with
appropriate boundary conditions.

Before investigating the problem of layered materials, it is
helpful to know the surface elements of the Green’s function
gsi of a slab of medium i . The principle step of the calculation
of gsi is presented in the appendix. These surface elements can
be written in the form of a 4×4 matrix gsi (Mi ,Mi ), within the
interface space Mi ≡ {−di

2 ,
di
2 }. The inverse of this matrix has

the following form [30]:

[↔g si (Mi ,Mi )]−1 =
(↔

Ai
↔
Bi↔

Bi
↔
Ai

)
(7)

where
↔
Ai and

↔
Bi are 2 × 2 matrices, whose elements are the

forms:

↔
Ai =

(
ri qi

qi ki

)
and

↔
Bi =

(
hi fi

fi ei

)
(8)

where ri , qi , ki , hi , fi , and ei are defined in the appendix.
Within the total interface space of the infinite SL, the

inverse of the matrix giving all the interface elements of
the Green’s function g(M M) is an infinite tridiagonal matrix
formed by linear juxtaposition of the elements g−1

si
(Mi ,Mi ).

We apply the Fourier transformation in the elementary cell
of the tridiagonal matrix to obtain the following dispersion
relation for the (Y Z) incidence plane:

α cos2(kB D)+ 2β cos(kB D)+ δ = 0 (9)

where the elements α, β , and δ are defined as

α = 4(e2h2 − f 2
2 )(e1h1 − f 2

1 )

β = 2 f1 f2[ f 2
1 + f 2

2 − (r1 + r2)(k1 + k2)]
+ ( f2e1 + f1e2)[2(q1 + q2)(r1 + r2)− h1 f1 − h2 f2]
+ ( f2h1 + f1h2)[2(q1 + q2)(k1 + k2)− e1 f1 − e2 f2]
+ h1h2[e2

1 + e2
2 − (k1 + k2)

2]
+ e1e2[h2

1 + h2
2 − (r1 + r2)

2]
− (q1 + q2)

2[h2e1 + h1e2 + 2 f1 f2]
δ = [(r1 + r2)(k1 + k2)− (q1 + q2)

2]2

− [(r1 + r2)e1 − (q1 + q2) f1]2 − [(r1 + r2)e2

− (q1 + q2) f2]2 − [(q1 + q2) f1 − (k1 + k2)h1]2

− [(q1 + q2) f2 − (k1 + k2)h2]2 + [e1h1 − f 2
1 ]2

+ [e1h2 + e2h1]2 + [e2h2 − f 2
2 ]2

− 2(r1 + r2)(k1 + k2)( f 2
1 + f 2

2 )

+ 2(q1 + q2)(r1 + r2) · (e1 f1 + e2 f2)

− 2(q1 + q2)
2(h1e1 + h2e2)

+ 2(q1 + q2)(k1 + k2)(h1 f1 + h2 f2)

+ 4 f1 f2[ f1 f2 − h2e1 − h1e2] − 0.5α.

Let us notice that the analytical expression of the
dispersion relation of the anisotropic photonic crystal
calculated in the framework of a Green’s function method is
simpler than using the 4 × 4 matrix approach (equation 7 in
ref [31]). This method allowed the authors in [20, 22, 23]
to calculate analytically the propagation matrix for one single
layer in order to deduce numerically the dispersion relation for
any anisotropic multilayered structure.

Within the theory of interface response function, the
reflected and transmitted waves u(D), resulting from a uniform
plane wave U(D) incident upon a plane boundary between two
different media, are given by [27–29]

u(D) = U(D)+ G(DM){[G(M M)]−1

× g(M M)[G(M M)]−1 − [G(M M)]−1}U(M). (10)

Let us mention that the incident wave, generated in the
substrate s, can have two different polarizations, namely,
transverse electric TE (E ⊥ plane of incidence) or magnetic
TM (E ‖ plane of incidence). Each wave propagating inside
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the anisotropic media generates two transmitted waves and two
reflected waves with different polarizations. Let us call Ei S and
Ei P the amplitudes of the S and P components of the incident
field. Then, the amplitudes of the reflected and transmitted
fields can be written as [30]

�ERS(z) = rSS �Ei S(z)+ rS P �Ei P(z) (11)

�ET S(z) = tSS �Ei S(z)+ tS P �Ei P (z) (12)

�ER P(z) = rP S �Ei S(z)+ rP P �Ei P(z) (13)

�ET P (z) = tP S �Ei S(z)+ tP P �Ei P(z). (14)

The expressions of ri j and ti j in these equations, with i, j = S
or P , are given in the appendix.

3. Discussion and numerical results

3.1. A semi-infinite superlattice in contact with an isotropic
substrate

We consider a semi-infinite superlattice consisting of two
alternating anisotropic media. As mentioned above (figure 1),
the orientation of each birefringent biaxial layer with respect
to the fixed (XY Z) coordinate system is characterized by the
Euler angles (φi , θi , ψi ). When the principal axes of layers
are parallel or perpendicular to the fixed axes, the transverse
electric TE (S-mode) and transverse magnetic TM (P-mode)
modes of an optical wave in a 1D photonic structure are
decoupled [30, 31]. The two modes S and P are strongly
coupled when the principal axes of the anisotropic media
constituting the SL have an arbitrary orientation [30, 31]. In
all the numerical results, we assumed ψ = 0◦, θ = 0◦, or 90◦
and we take the azimuthal angle as a variable.

We display in figure 2, the projected band structure of a
semi-infinite periodic multilayer. The band structure has been
calculated using the analytical form of the dispersion equation
derived for an infinite anisotropic superlattice (equation (9)).
It is important to note that infinite and semi-infinite photonic
crystals have the same band structure, the only difference
is the existence of surfaces modes in the case of a semi-
infinite structure. In this illustration, we suppose that the two
layers 1, 2 are characterized with the following orientations
(φ1 = 0◦, θ1 = 0◦) and (φ2 = 45◦, θ2 = 90◦). The
thicknesses d1 and d2 of the layers are chosen such that
nz1d1 = nz2d2. The dimensionless frequency � = ωD

2πc

and dimensionless wavevectors K‖ = k‖ D
2π have been used

in numerical illustrations, k‖ is the wavevector parallel to the
layers and c is the speed of light in vacuum. Depending on real
or imaginary Bloch wavenumbers, an infinite periodic structure
can support both propagating and evanescent Bloch waves.
In figure 2, gray areas correspond to the propagating states,
whereas white areas contain the evanescent states only and are
usually referred to as photonic band gaps. One obvious feature
of figure 2 is that there is no absolute gap, this means a gap
existing for every value of the wavevector k‖. The nonexistence
of the absolute photonic band gap in one-dimensional photonic
crystal is the cause of two factors. The first is that the edges
of the directional photonic band gaps (photonic band gap

Figure 2. Projected photonic band structure of the (NaNO2/SbSI)
superlattice. The reduced frequency� = ωD

2πc is presented as a

function of the reduced wavevector K‖ = k‖ D
2π . The gray and white

regions correspond to the pass bands and to the gaps of the
superlattice, respectively. The azimuthal and polar angles (φi , θi) of
the layers NaNO2 and SbSI are assumed to be (0◦, 0◦) and
(45◦, 90◦), respectively. The thicknesses d1 and d2 of the layers are
chosen such that nz1d1 = nz2d2. The straight full line shows the light
line of the vacuum. The area delimited by the two dashed lines and
the vacuum light line represents the reflection gap.

at a certain direction) will shift to higher frequencies with
the increase in incident angle, usually leading to the closure
of the overall photonic band gap. The second is that the
electromagnetic wave propagates without any reflection at the
Brewster angle. However, the absence of an absolute photonic
band gap does not mean that there is no total reflection. The
criterion for the existence of total reflection is that there are
no propagating modes that can couple the incident wave. We
mentioned that the range of the reflection gap (RG) in figure 2
is marked by two dashed solid lines when the incident light is
launched from a medium with a low index of refraction such as
air (ns = 1). When the frequency falls in this range, the wave
cannot propagate inside the superlattice and will be reflected
back. For decoupled modes, the RG for both TE and TM
polarizations is defined by the edges of the upper photonic band
gap at the grazing incidence and the lower photonic band gap
at the normal incidence. The RG is always narrower and is
closed up for a smaller refractive index of the ambient medium
(ns) for TM polarization than for TE one. The refractive index
controls the width of RG with respect to the given parameters
of the layers constituting the 1D photonic crystal. In figure 3,
we study the evolution of the width of RG versus ns. It is
shown that the lower edge of the gaps shifts towards a higher
frequency when the refraction index increases. Thus, the width
of the gaps decreases till the reflection gap is closed up.

In order to achieve a structure with a wide RG, it
is important to investigate the influence of the parameters
characterizing the photonic crystal, namely, the filling fraction
d2
D and the orientations of the axes of layers. We present
in figures 4(a) and (b) a color map of the width � of the
reflection gap as a function of both the azimuthal angle φi

and the filling fraction. In these two illustrations, figures 4(a)
and (b), we assume that the azimuthal angle φ1 (φ2) of the
first (second) crystal layer NaNO2 (SbSI) is zero and we take
the azimuthal angle φ2 (φ1) of the second (first) crystal layer

4
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Figure 3. Variation of the frequency� of the reflection gap versus
the refractive index of substrate ns. The structural parameters are the
same as in figure 2.

Figure 4. A color map of the width � of the RG as a function of
both the azimuthal angle φi and the filling fraction d2

D . The polar
angle and the thickness of the layers constituting the superlattice are
the same as in figure 2. (a) Corresponds to the azimuthal angle
φ1 = 0◦ and (b) to φ2 = 0◦.

SbSI (NaNO2) as a variable. The red (black) and blue (gray)
colors indicate, respectively, the high and low values of the
width of RG. It can be noted that these structural parameters of
anisotropic layers have an important effect on the bandwidth
for RG. The maximum value of � is obtained at a value of
0.25 of the filling fraction for both cases. In figure 4(a), �
reaches its maximum (� = 0.061) when 0◦ � φ2 � 10◦ and
in figure 4(b) the RG reaches a maximum value (� = 0.077)
around φ1 = 90◦.

Figure 5. Variation of the frequency� of the RG as a function of the
azimuthal angle φ2 while φ1 = 0◦ for curve (a) and φ1 while φ2 = 0◦
for curve (b). The filling fraction equals 0.25 and the polar angles θi

of the layers have the same values as in figure 2.

To evaluate only the effect of the azimuthal angle φ on
the width of the RG for this proper choice of film thickness,
we present in figures 5(a) and (b) its width as a function of
φ1 and φ2 for two layers, respectively. One can remark that
the variation of bandwidth depends on the birefringence of the
layer constituting the superlattice. In figure 5(a), the lower
edge of the RG shifts to higher frequencies with the increase
in azimuthal angle φ2 of the strongly anisotropic layer SbSI,
leading to the narrower RG. However, in figure 5(b), the width
of the RG is rather larger when the angle φ1 of the slightly
biaxial layer NaNO2 increases, because the lower edge of
the RG shifts to lower frequencies when φ1 increases. Thus,
the birefringence of layers enhances the performance of the
mirror compared with its isotropic counterpart by enlarging the
spectral width of the band of reflection.

Nevertheless, if we illuminate the boundary of a semi-
infinite superlattice from a substrate made of a material with
high refractive index, the wave will be partially transmitted
through the superlattice, and only partially reflected back,
depending upon the incidence angle or the wavevector k‖. The
ability of the photonic crystal to behave like a perfect mirror
imposes a limitation on the choice of substrate. In previous
work [11, 17–19], the authors proposed two alternative
solutions to overcome this difficulty. One solution would be
to associate the superlattice with a cladding layer having high
velocities of light (or lower indices of refraction) in order to
create a barrier for the propagation of photonic waves. Another
solution would consist of associating two or a few superlattices

5
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chosen appropriately in such a way that the superposition of
their band structures displays a complete photonic band gap.
However, when the total number of periods of the mirror
increases, the fabrication complexity increases.

In our paper we examine whether an anisotropic substrate
can remove the limitation related to the choice of substrate.
Thus, the anisotropic photonic crystal exhibits an absolute
photonic band gap.

3.2. Semi-infinite superlattice in contact with an anisotropic
substrate

The plane electromagnetic wave is considered to illuminate
the boundary of a semi-infinite photonic crystal at an angle
θi from a semi-infinite anisotropic homogeneous medium.
The semi-infinite superlattice NaNO2/SbSI is characterized
by the parameters (φ1, θ1, φ2, θ2, d2), shown above, for a
wide reflection gap: (65◦, 0◦, 0◦, 90◦, 0.25). The anisotropic
substrate is formed by the material NaNO2 with a different
orientation of its axes. In our study, we have taken
the material NaNO2 as a substrate, because the width of
RG gradually increases with the increase of the azimuthal
angle characterizing the orientation of the anisotropic crystal
(figure 5(b)) unlike for the material SbSI (figure 5(a)). For
particular cases, we investigate in figure 6 the effect of polar
and azimuthal angles on the absolute RG. The photonic band
structures shown in figures 6(a) and (b) correspond to (φ0 =
0◦, θ0 = 90◦) and (φ0 = 0◦, θ0 = 0◦) of the substrate,
respectively. White and gray regions respectively represent
the forbidden and allowed bands. The area between the two
horizontal lines give the absolute RG. The effect of the polar
angle on the presence of the Brewster window can clearly be
seen in figure 6(b). The structure displays an absolute photonic
band gap when the polar angle of the substrate is different
from the polar angle of layers constituting the superlattice
(figure 6(a)). However, the azimuthal angle cannot open the
RG for both TE and TM polarizations for an identical polar
angle of substrate and layers forming the photonic crystal
(figure 6(b)).

In fact, the number of periods of the superlattice is finite
in a real system, which is grown on a substrate and usually has
a buffer layer. In experiments, the deposit of a superlattice on a
substrate requires the existence of an intermediate layer (buffer
layer) to avoid the problem of direct growth of the layers on
a substrate. The objective of our work is to show the effect
of the buffer layer in obtaining an absolute RG whatever the
type of substrate. Indeed we have seen in figure 3 that with a
substrate (incident medium) with low indices of refraction as
compared to the indices in the superlattice constituents, it is
possible to obtain an RG. However, it is not possible to obtain
such an RG if the substrate is made of a material with high
indices of refraction. Our purpose is to show that such an RG
can again be obtained by adding a buffer layer with low indices
of refraction at the entrance of the superlattice to play the role
of a barrier. We investigate the structural parameters for the
formation of the absolute photonic band gap in a cladded finite
superlattice.

Figure 6. Projected band diagram of a semi-infinite anisotropic
periodic multilayer. A substrate is made with the material NaNO2,
but with different orientations (φi , θi ). Curves (a) and (b) correspond
to (0◦, 90◦) and (0◦, 0◦), respectively. The other parameters of SL
layers are mentioned in the text.

3.3. Cladded finite superlattice embedded between two
substrates

The structure is formed with a finite NaNO2/SbSI SL clad
on one side by a biaxial layer NaNO2 of thickness d0,
and embedded between two substrates made of an isotropic
medium with high refractive index (ns = 4). The finite system
contains N = 14 layers of SbSI and N + 1 layers of NaNO2.
All layers of a cladded finite superlattice are characterized
by the same parameters which optimize the formation of
an absolute band gap as shown in section 3.2. In a finite
superlattice structure, the transmission never reaches zero, but
can decrease up to values close to zero in a certain range of
frequency. Let us define the RG as a frequency interval in
which the transmission intensity falls below a certain threshold
whatever the incidence angle or the polarization of the wave.
By fixing the threshold at 10−3, we briefly discuss the existence
and behavior of the RG as a function of the geometrical
parameters involved in our structure, namely, the thickness d0

of the NaNO2, the azimuthal angle of a NaNO2 layer, and

6
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Figure 7. Dependence of the RG on the thickness d0 of the cladding
layer. the number of unit cells is N = 14. The transmission threshold
is fixed at 10−3.

Figure 8. Dependence of the reflection gap on the number of unit
cells N of the superlattice. The thickness of the cladding layer
d0 = 5.4D. The transmission threshold is fixed at 2 × 10−3.

the number N of unit cells in the superlattice. In figure 7,
we present the evolution of RG versus the thickness d0. It
appears that the bandwidth reaches its maximum value at
approximately d0 = 5.4D. By increasing the thickness of
this layer, the RG is closed for d0 greater than 8D. To
emphasize the formation of the RG, we study in figure 8, the
influence of the number N of unit cells of the superlattice on
the transmission power when d0 = 5.4D, the other parameters
being kept the same as in the above illustration. The absolute
gap is presented by assuming that the transmission remains
below the threshold of 2 × 10−3. For N � 13, the RG appears
and its width increases with N , but the higher N , the smaller
the enlargement of the band gap. The width of the absolute gap
reaches its maximum value when N = 14.

For the sake of completeness, we also present in figure 9,
the effect of variation of the azimuthal angle φ0 of a cladding
layer NaNO2. the figure shows a strong effect of the orientation
of this layer on the existence of the RG. The absolute gap
disappears when the angle φ0 is greater than 25◦. In the region,
0◦ � φ0 � 25◦, when the transverse electric and transverse
magnetic polarizations are slightly coupled, a relatively large
RG may be obtained. In order to optimize exactly the value of

Figure 9. Dependence of the RG on the azimuthal angle φ0 of the
cladding layer. The number of unit cells is N = 14 and the thickness
of the cladding layer is d0 = 5.4. The transmission threshold is fixed
at 10−3.

Figure 10. Color map of the width � of an absolute RG as a
function of both the azimuthal angle φ0 of the cladding layer and φ1

of NaNO2 layers of SL. The transmission threshold is fixed at 10−3.

the width� of an absolute band gap, we present in figure 10
a color map of � as a function of both the azimuthal angles
φ0 and φ1 of the cladding layer and the layers NaNO2 in the
superlattice, respectively. The red and blue colors indicate,
respectively, the high and low values of the width of an absolute
RG. The largest width � = 0.02 is obtained for 10◦ � φ0 �
24◦ and 80◦ � φ1 � 90◦.

A detailed study of the disorder effect on the misalignment
of layers is out of the scope of this paper. However, to check
the robustness of the designed photonic crystal in terms of the
orientation alignment of the layers in the structure, we start
from the reference case of figure 9 and change the orientations
of each of the two types of layers in the superlattice arbitrarily
by plus or minus 5◦. It should be remembered that figure 9
was obtained for the transmission through a finite superlattice
when putting the threshold for the transmission at 10−3. Now,
by rotating the angle φ1 by + or −5◦, the behaviors do not
change significantly with respect to those in figure 9 (see
figures 11(a) and (b)). However, by changing the angle φ2

in the more birefringent SbSI layers by + or −5◦, the RG no
longer survives when the threshold for transmission is fixed

7
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Figure 11. Same as in figure 9 but with the change of the
orientations of the layers NaNO2 by minus (a) or plus (b) 5◦ and the
SbSI by plus (c) or minus (d) 5◦. The transmission threshold is fixed
for (a) and (b) at 10−3 and for (c) and (d) at 5 × 10−3.

at 10−3. By decreasing this threshold to 5 × 10−3, one can
see (figures 11(c) and (d)) that the RG appears again for some
range of the angle φ0. This RG can be widened if the threshold
for the transmission is increased. One can understand that
with the above change in the orientation of the SbSI layers,
the cladding layer will become less efficient.

The isotropic omnidirectional reflector requires a cladding
layer consisiting of a material having a low optical index that
acts like a barrier for the propagation of light generated in the
substrate, while this condition has some limitations due to the
material’s characteristics. However, our birefringent reflector
requires a suitable choice of the orientations of the two crystals
forming the structure to achieve an absolute photonic band gap
regardless of the nature of the substrate.

4. Conclusions

In summary, we have demonstrated the existence of an absolute
photonic band gap in a 1D anisotropic photonic crystal. This
property can be achieved by the combination of a finite
anisotropic superlattice with a cladding layer, which is made
from the same material as one of the layers constituting
the perfect superlattice, but with different orientation and

thickness. A comprehensive study of the evolution of the
gap characteristics versus structural parameters, namely, the
orientation of the layers, the filling fraction, the thickness
of the cladding layer, etc, has been presented. It is shown
that the birefringence of the layers enhances the performance
of the birefringent reflector as compared to the isotropic
structure. The transmission coefficient and the dispersion
curves presented in our results are based on analytical
calculations of the Green’s functions for optical waves in
anisotropic multilayer structures.
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Appendix

(1) The bulk Green’s function elements of an infinite
anisotropic medium are given by

G X X (Z , Z ′) = − C

2α−α+
[α− A− exp(−α+|Z − Z ′|)

− α+ A+ exp(−α−|Z − Z ′|)]
GY X (Z , Z ′) = − B

D

C

2α−α+
[α− exp(−α+|Z − Z ′|)

− α+ exp(−α−|Z − Z ′|)]
G Z X (Z , Z ′) = − iqY C

2

εXY

εZ Z
[exp(−α+|Z − Z ′|)

− exp(−α−|Z − Z ′|)] sgn(Z − Z ′)

G XY (Z , Z ′) = − B

D

C

2α−α+
[α− exp(−α+|Z − Z ′|)

− α+ exp(−α−|Z − Z ′|)]
GY Y (Z , Z ′) = − C

2α−α+ D
[α− A+ exp(−α+|Z − Z ′|)

− α+ A− exp(−α−|Z − Z ′|)]
G ZY (Z , Z ′) = −C

2

iqY

q2
0εZ Z

[A+ exp(−α+|Z − Z ′|)
− A− exp(−α−|Z − Z ′|)] sgn(Z − Z ′)

G X Z (Z , Z ′) = − iqY C

2

εXY

εZ Z
[exp(−α+|Z − Z ′|)

− exp(−α−|Z − Z ′|)] sgn(Z − Z ′)

GY Z (Z , Z ′) = −C

2

iqY

q2
0εZ Z

[A+ exp(−α+|Z − Z ′|)
− A− exp(−α−|Z − Z ′|)] sgn(Z − Z ′)

G Z Z (Z , Z ′) = 1

q2
Y − q2

0εZ Z

[
1

D
δ(Z − Z ′)

+ C

2

q2
Y

q2
0εZ Z

(α+ A+ exp(−α+|Z − Z ′|)

− α− A− exp(−α−|Z − Z ′|))
]

(A.1)
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where
A± = (q2

Y −q2
0εX X −α2±), B = q2

0εXY , C = (α2+−α2−)−1,
D = q2

0εZ Z (q2
Y − q2

0εZ Z )
−1, and δ(Z − Z ′) the Dirac delta

function.
q0 = ω

c is the vacuum wavevector, c is the velocity of light
in vacuum, and ω is the frequency of the optical wave.

ε is the dielectric tensor, defined in the laboratory system
(XY Z) by ε = AεD A−1 where εD is the diagonal dielectric
tensor such that εD = diag(εx , εy, εz) and A is the coordinate
rotation matrix given by the following matrix for an arbitrary
value of the azimuthal angle φ, the polar angle θ , and for
ψ = 0 [26]:

↔
A =

( cos(φ) − cos(θ) sin(φ) sin(θ) sin(φ)
sin(φ) cos(θ) cos(φ) − sin(θ) cos(φ)

0 sin(θ) cos(θ)

)
.

(A.2)
(2) The surface response function of the semi-infinite
anisotropic medium.

The wave field equation in terms of the macroscopic
electric field vector could be written for a medium limited by
an opaque surface as

�(Z)(q2
0

↔
ε �E − �� ∧ (�� ∧ �E))+ δ(z)

↔
V (�r) �E = 0 (A.3)

where �(Z) is the Heaviside step function defined by

�(Z) =
{

1 si Z � 0

0 si Z < 0
(A.4)

and
↔
V (�r) is the operator of cleavage defined as a 3 × 3 matrix:

↔
V (�r) =

⎛
⎝ ∂

∂Z 0 0
0 ∂

∂Z −iqY

0 0 0

⎞
⎠ . (A.5)

Using the theory of interface response function, the
equation (A.3) is written as⎛
⎝ q2

0εX X − q2
Y + ∂2

∂Z2 q2
0εXY 0

q2
0εXY q2

0εY Y + ∂2

∂Z2 −iqY
∂
∂Z

0 −iqY
∂
∂Z q2

0εZ Z − q2
Y

⎞
⎠

×
( gX X gXY gX Z

gY X gY Y gY Z

gZ X gZY gZ Z

)
+ δ(Z)

⎛
⎝ ∂

∂Z 0 0
0 ∂

∂Z −iqY

0 0 0

⎞
⎠

×
( gX X gXY gX Z

gY X gY Y gY Z

gZ X gZY gZ Z

)
= δ(Z − Z ′)

↔
I (A.6)

where
↔
I is a 3 × 3 unit matrix. In order to simplify the

resolution of this equation, we envisage eliminating the third
row and third column of the response function matrix with the
help of the constitutive relations and work within the (XY )
plane throughout. But this is not the only way to simplify the
complex problem. One can choose to work in any plane and
even start with equation (A.6) as such. The resulting cleavage
operator in the (XY ) plane takes the following form:

↔
V (Z) =

(
∂
∂Z 0
0 −D ∂

∂Z

)
(A.7)

where D is defined as D = q2
0εZ Z (q2

Y −q2
0εZ Z )

−1. The inverse
of the surface response function of the semi-infinite anisotropic
medium is given by [27–29]

↔
g

−1

s (0, 0) = ↔
s(z, z′)

↔
G

−1
(z, z′)|z,z′=0 (A.8)

where ↔
s(0, 0) = ↔

I + ↔
V (Z)

↔
G(z, z′)|z,z′=0 (A.9)

where
↔
G

−1
(0, 0) is the inverse of the bulk response function

in the (XY ) plane taken at (z, z ′ = 0). With the help of
these equations, we can find the inverse of the surface response
function of the semi-infinite anisotropic medium:

↔
g

−1

s (0, 0) = 1

(α+ + α−)

×
(−(k2 + α+α−) B

B −D(k2 − α2+ − α2− − α+α−)

)
(A.10)

where k2 = q2
Y −q2

0εX X , B , and D are defined in equation (A.1)
and α± are defined in equation (4).

(3) The surface response function of the finite anisotropic
medium.

The surface response function of a finite layer of an
homogeneous medium i , extending in the region −d0

2 � Z �
d0
2 with free surfaces is given by [27–29]

↔
g

−1

s (Mi ,Mi ) = ↔
s(Mi ,Mi )

↔
G

−1
(Mi ,Mi ). (A.11)

↔
s(Mi ,Mi ) and

↔
G

−1
(Mi ,Mi ) are defined within the

interface space Mi ≡ {−di
2 ,

di
2 }. Then the

↔
g

−1

s (Mi ,Mi ) has
the following form [30]:

[gi(Mi ,Mi )]−1 =
(

Ai Bi

Bi Ai

)
(A.12)

where Ai and Bi are 2 × 2 matrices, whose elements are the
forms:

Ai =
(

ri qi

qi ki

)
and Bi =

(
hi fi

fi ei

)
(A.13)

where ri , qi , ki , hi , fi , and ei are defined as

ri = −Ci [αi+ Ai− coth θi+ − αi− Ai+ coth θi−]
qi = Ci Bi [αi+ coth θi+ − αi− coth θi−]

ki = −Ci Di [αi+ Ai+ coth θi+ − αi− Ai− coth θi−]
hi = Ci [αi+ Ai−(sinh θi+)−1 − αi− Ai+(sinh θi−)−1]

fi = Ci Bi[αi−(sinh θi−)−1 − αi+(sinh θi+)−1]
ei = −Ci Di [αi− Ai−(sinh θi−)−1 − αi+ Ai+(sinh θi+)−1]

(A.14)
with

Ai± = (q2
Y − q2

0ε
(i)
X X − α2

i±), Bi = q2
0ε
(i)
XY ,
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Ci = (α2
i+ − α2

i−)
−1, Di = q2

0ε
(i)
Z Z (q

2
Y − q2

0ε
(i)
Z Z )

−1

and θi± = αi±di .

(4) The expressions of the amplitude transmitted (tSS, tP S)
and reflected (rSS , rP S) coefficients, when a pure (S) waves
is incident, are of the form:

rSS = −(2αd11 + 1) rP S = −(2αd21)
BS

BP

tSS = −(2αd13) tP S = −(2αd23)
BS

BP

(A.15)

where α = (k2
‖ − ω2εs

c2 )
1
2 , k‖ is the wavevector parallel to the

(XY ) interfaces, ω is the frequency of the optical wave, c
the speed of light in a vacuum and εs the permittivity of the
substrate.

BS = 1 is the amplitude of the S wave and BP , (BP =
−iαc
ω

√
εs
) is the amplitude of the P input wave.
d11, d21, d13, and d23 are the elements of the truncated

matrix of the finite system inserted between the two substrates
presented in figure 1.

(5) The expressions of the amplitude transmitted (tP P , tS P )
and reflected (rP P , rS P ) coefficients when a pure TM (P) wave
is incident are of the form:

rP P =
(

2q2
0εs

α
d22 − 1

)
rS P =

(
2q2

0εs

α
d12

)
BP

BS

tS P =
(

2q2
0εs

α
d14

)
BP

BS
tP P =

(
2q2

0εs

α
d24

)
(A.16)

as the same d12, d22, d14, and d24 are the elements of the
truncated matrix of the finite system.

We note here that the total reflectivities for the P and S
modes are

RP ≡ RP P + RS P = |rP P |2 + |rS P |2 (A.17)

RS ≡ RSS + RP S = |rSS|2 + |rP S|2 (A.18)

and the total transmission for the P and S modes have the
following expressions:

TP ≡ TP P + TS P = |tP P |2 + |tS P |2 (A.19)

TS ≡ TSS + TP S = |tSS|2 + |tP S|2. (A.20)
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